Sumoylation of histone deacetylase 1 regulates MyoD signaling during myogenesis

نویسندگان

  • Hosouk Joung
  • Sehee Kwon
  • Kyoung-Hoon Kim
  • Yun-Gyeong Lee
  • Sera Shin
  • Duk-Hwa Kwon
  • Yeong-Un Lee
  • Taewon Kook
  • Nakwon Choe
  • Jeong Chul Kim
  • Young-Kook Kim
  • Gwang Hyeon Eom
  • Hyun Kook
چکیده

Sumoylation, the conjugation of a small ubiquitin-like modifier (SUMO) protein to a target, has diverse cellular effects. However, the functional roles of the SUMO modification during myogenesis have not been fully elucidated. Here, we report that basal sumoylation of histone deacetylase 1 (HDAC1) enhances the deacetylation of MyoD in undifferentiated myoblasts, whereas further sumoylation of HDAC1 contributes to switching its binding partners from MyoD to Rb to induce myocyte differentiation. Differentiation in C2C12 skeletal myoblasts induced new immunoblot bands above HDAC1 that were gradually enhanced during differentiation. Using SUMO inhibitors and sumoylation assays, we showed that the upper band was caused by sumoylation of HDAC1 during differentiation. Basal deacetylase activity was not altered in the SUMO modification-resistant mutant HDAC1 K444/476R (HDAC1 2R). Either differentiation or transfection of SUMO1 increased HDAC1 activity that was attenuated in HDAC1 2R. Furthermore, HDAC1 2R failed to deacetylate MyoD. Binding of HDAC1 to MyoD was attenuated by K444/476R. Binding of HDAC1 to MyoD was gradually reduced after 2 days of differentiation. Transfection of SUMO1 induced dissociation of HDAC1 from MyoD but potentiated its binding to Rb. SUMO1 transfection further attenuated HDAC1-induced inhibition of muscle creatine kinase luciferase activity that was reversed in HDAC1 2R. HDAC1 2R failed to inhibit myogenesis and muscle gene expression. In conclusion, HDAC1 sumoylation plays a dual role in MyoD signaling: enhancement of HDAC1 deacetylation of MyoD in the basally sumoylated state of undifferentiated myoblasts and dissociation of HDAC1 from MyoD during myogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis

Mammalian target of rapamycin (mTOR) has emerged as a key regulator of skeletal muscle development by governing distinct stages of myogenesis, but the molecular pathways downstream of mTOR are not fully understood. In this study, we report that expression of the muscle-specific micro-RNA (miRNA) miR-1 is regulated by mTOR both in differentiating myoblasts and in mouse regenerating skeletal musc...

متن کامل

PC4 coactivates MyoD by relieving the histone deacetylase 4-mediated inhibition of myocyte enhancer factor 2C.

Histone deacetylase 4 (HDAC4) negatively regulates skeletal myogenesis by associating with the myocyte enhancer factor 2 (MEF2) transcription factors. Our data indicate that the gene PC4 (interferon-related developmental regulator 1 [IFRD1], Tis7), which we have previously shown to be required for myoblast differentiation, is both induced by MyoD and potentiates the transcriptional activity of ...

متن کامل

PC4/Tis7/IFRD1 Stimulates Skeletal Muscle Regeneration and Is Involved in Myoblast Differentiation as a Regulator of MyoD and NF-κB*

In skeletal muscle cells, the PC4 (Tis7/Ifrd1) protein is known to function as a coactivator of MyoD by promoting the transcriptional activity of myocyte enhancer factor 2C (MEF2C). In this study, we show that up-regulation of PC4 in vivo in adult muscle significantly potentiates injury-induced regeneration by enhancing myogenesis. Conversely, we observe that PC4 silencing in myoblasts causes d...

متن کامل

Hedgehog Signaling Regulates MyoD Expression and Activity*

The inhibition of MyoD expression is important for obtaining muscle progenitors that can replenish the satellite cell niche during muscle repair. Progenitors could be derived from either embryonic stem cells or satellite cells. Hedgehog (Hh) signaling is important for MyoD expression during embryogenesis and adult muscle regeneration. To date, the mechanistic understanding of MyoD regulation by...

متن کامل

A dynamic role for HDAC7 in MEF2-mediated muscle differentiation.

The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2018